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NUMERICAL EXPERIMENTS 
ON INTERACTIONS AND CLUSTERING 

PHENOMENA 
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Facultad de Ingenieria-Paseo Colbn 850-1063 Buenos Aires-Argentina 

(Received 21 July 1999) 

In this work we study, by simulation in a two dimensional lattice, the influence of diverse 
parameters of the interaction potential on the geometry of a system of particles. The 
geometry of the system is described by means of the scaling behaviour of concentration, 
quantified by the fractal box-counting dimension, and the configurations are sampled 
by means of the Metropolis algorithm. The mean concentrations of the systems studied 
are below and near the percolation threshold, since the main application of our study is 
the analysis of the scaling behaviour of conductivity in dynamic percolating systems. 
We show how a detailed analysis of the behaviour of concentration at  different scales 
enlights the interplay between two correlation lengths in the system: the one due to 
interactions, the other due to geometrical contiguity. The description of this interplay is 
essential to understand the deep roots of the universality of the exponents in percolation 
theory, and their physical implications. 

Keywords: Fractal dimension; clusters; percolation 

1. INTRODUCTION 

The special problem of the influence of interactions between the par- 
ticles on the percolation phenomena has been addressed in [2], where it is 
shown to be far from trivial. The main purpose of this paper was to 
describe the influence of interactions on the value of the threshold q&. 
Following the ideas from this paper, we see that attractive interactions 
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528 J.  R. BUSCH AND D. H. KURLAT 

affect the percolation phenomena in two ways: 

1. They increase the connectivity, because near particles come to be in 

2. They decrease connectivity, because the compactation of clusters 
contact. 

affects the relation radius to mass. 

It is rather natural to ask ourselves how these two geometrical facts 
affect the fractal dimension d, of the clusters. By the universality hy- 
pothesis the exponent d, should not be affected by the short range 
interactions for concentrations near the percolation threshold. On the 
other hand, the compaction argument seems to imply a modification 
on fractal dimension. Thus, we see that the invariance of these fractal 
dimensions under the interactions is an essential fact for the descrip- 
tion of how they affect the geometry of the clusters. This is the main 
subject of our work. 

We use the Metropolis algorithm [ I ,  54.41 to generate sample confi- 
gurations of particles in a two-dimensional square lattice. The adjust- 
able parameters for the simulations are the density of particles, the 
intensity of the square attractive potential and its range of attraction. 
Notice that the intensity of the potential is, due to Boltzmann law, 
numerically equivalent to the inverse temperature, thus we do not treat 
them as independent parameters. In this first approach, we measure the 
box-counting fractal dimensions d’ of the whole configurations, rather 
than those of the clusters, to have an insight about their sensitivity to 
the interactions. To estimate the box-counting fractal dimensions we 
use the program df 2 from the public domain package “mfrac” by Jordi 
Mach (jordi@daphne.qf.ub.es), modified as we shall describe in the 
following section. 

2. NUMERICAL EXPERIMENTS 

As we have already mentioned, the adjustable parameters for our 
simulations are the density, the inverse temperature (equivalent to the 
intensity of the potential), and the range of the potential. 

We start with a regular disposition of the particles (we assume 
everywhere, and this is relevant when we speak of density, that the 
particles are 2 x 2 squares) in a regular lattice 200 x 200, and then we 
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SCALING AND PERCOLATION 529 

let the Metropolis algorithm perform its importance sampling of con- 
figurations. Let us call cycle a sequence formed by one movement for 
each particle, where the particles are moved always in the same order. 
Then we capture a slide of the configuration every ten cycles, and we 
compute its box-counting fractal dimension. Recall that this compu- 
tation can be described as: 

1. For each size E from a logarithmic equispaced sequence, estimate 
the mean count N(E)  of boxes having particles in its interior in a 
regular partition of size E of the lattice. 

2. The box-counting dimension is estimated by the negative of the 
slope of the linear regression of ln(N(E)) versus In(&), according to 
the model N ( E )  C C E - ~ ~ .  

2.1. A Small Size Effect 

A general fact in this process was that dimensions increase with 
density. When E is less than the mean distance between particles, in a 
finite random environment there is no scaling, and N(E) is asymp- 
totically constant. The effect via the regression is to lower the dimen- 
sion. This effect is greater for low concentrations, because then the 
mean distance is bigger. This small box size phenomena made our box- 
counting dimensions artificially sensitive to density, so we modified 
the E range in df2 to exclude this effect, starting the box sizes at this 
mean distance. 

2.2. General Clustering Effect 

A second general fact in this process is that dimension decreases in 
the first cycles, relaxing quickly to a constant value. We explain this 
fact as a clustering effect of the interactions and temperature (not yet 
a percolation effect). Indeed, we can represent our configurations at 
low densities as a random assembly of boxes, each containing a small 
cluster or not [3, 52.31 (this is nothing but a rephrasing of the meaning 
of a scaling exponent d for concentration). In this representation, the 
side of the boxes is above the scale of the correlation length. When the 
side of the boxes in our box-counting algorithm is above the mean 
distance between these clusters, the corresponding number of boxes 
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530 J.  R. BUSCH AND D. H. KURLAT 

scales as E-*. But when the side is below this mean distance and the 
mean radius of the clusters, there is a constant factor for the number 
of clusters, and in this scale we see roughly the behaviour E - ~ c ,  where 
d, denotes the dimension of a cluster. Thus the global regression slope 
is the resultant of a d, slope for small boxes and 2 for big boxes, and 
we see that we can think of the resulting dimension df as a weighted 
mean of d, and 2, let us say d' = Bd, + (1 - 692. At random or with a 
particle regular distribution, there is no regular clustering at low den- 
sity, and B = 0. But the effect on interactions and temperature pro- 
motes clustering leaving room for greater holes, increasing B and 
lowering dp Notice that our explanation of the resultant value d !  in 
the regression is based on the extreme slopes, and that what we really 
see in our experiments is a rather slight modification in the slopes 
during the initial clustering process (see Figs. 1, 2). 

Notice also that our explanation is somewhat analogous to our 
previous one on the artificial sensitivity to density: the point is that 
now the effect is not artificial, because in the renormalization we have 

-6 -5.5 -5 -4.5 -4 -3.5 -3 -25 -2 -1.5 -1 

FIGURE 1 The contrast between an initial configuration (ten cycles, df = 1.84) and an 
advanced one (two hundred cycles, d, = 1.77). 
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SCALING A N D  PERCOLATION 53 1 

FIGURE 2 The clustering effect induced by interactions and temperature. The initial 
and advanced configurations are the same than those from Figure 1. 

jumped from “particle” without microstructure to clusters with it, and 
that this microstructure is caused by interactions and temperature. 

2.3. The Effect of Range and Intensity of the Potential 

Notice that in the Metropolis algorithm the probability for the ef- 
fectivization of a movement with a positive variation of the poten- 
tial 6U is given by e-*U’kT, and that for a square potential 6U is 
proportional to the difference between the number of particles in the 
range of the potential after the movement and before the movement. 
This difference is, for short movements, of small order, as the number 
of particles on the perimeter of the range. We set as a parameter the 
number p = A/kT,  where A denotes the intensity of the pair potential, 
and we test the p values 1 .O, 0.1, 0.01. There is a significant difference 
in the behaviour of our configurations with respect to the intensity p, 
depending on the range of the potential. 

All the examples below are obtained with 500 cycles of the 
Metropolis algorithm. Let us consider a length unity u. Then we 
work with a hard-core exclusion distance of 3 u. For moderate ranges 
( r =  lOu), there is a strong clustering effect for p =  1.0, thus giving 
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532 .I. R. BUSCH AND D. H. KURLAT 

lower dimensions (see Fig. 3). (notice that the values tested for the 
parameters p and r are consistent, in scale, with a rough approxima- 
tion of liquids with van der Waals interactions, where the range of 
attraction is in the order of some interatomic distances and the pair 
intensity in the order of kT). But for longer ranges ( r  = 20 u), the clus- 
tering effect on dimension is negligible, and we find instead a remark- 
able ordering effect for p= 1.0 (we also see this effect starting from a 
random initial configuration, i.e., this is not a consequence of the ini- 
tial regularity). (see Fig. 4). We think that this last effect is rather artifi- 
cial, due to the finite size and the rigidity of the system, but we have 
not obtained a complete explanation yet. For shorter ranges ( I  = 7 u), 
the clusters are smaller and there is a stronger random effect, and we 
obtain again a dimension df = 1.74 for p = 1 .O, 4 = 0.09 (see Fig. 5). We 
show some evidence in the dimensions of Table I. 

This clustering effect of the interaction potential contributes at low 
concentration to the correlation length, but near the percolation thresh- 
old the geometrical clustering due to contiguity prevails (see Fig. 6), 
and for density q5 = 0.15 we obtain df = 1.74 for p = 1 .O and df = 1.77 for 
p=O.l. 

FIGURE 3 The clustering effect of intensity. p=O.1 (left), p=O.1 (right). 4=0.09, 
r=lOu.  
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SCALING AND PERCOLATION 533 

FIGURE 4 The variation in the effect of intensity due to range (I): r =  I O U  (left), 
r = 20 u (right). 9 = 0.09, p = 1 .O. Notice the remarkable regularity of the configuration 
on the right. 

FIGURE 5 The variation in the effect of intensity due to range (11): r =  I O U  (left), 
r = 7 u  (right). 9=0.09, p=l.O. 
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534 J. R. BUSCH AND D. H. KURLAT 

TABLE I Sensitivity of box-counting dimension to clustering. r = 1Ou (left): strong 
clustering effect due to interactions for p = 1.0 (see Fig. 3). r = 20u (right): the differ- 
ences in the dimension due to the potential are negligible (see Fig. 4) 

P\d 0.07 0.09 0.11 p\$ 0.07 0.09 0.11 
I .O 1.68 1.68 1.68 1 .o 1.76 1.78 1.77 
0.1 1.75 1.77 1.77 0.1 1.77 1.77 1.77 
0.01 1.76 1.76 1.76 0.01 1.77 1.76 1.76 

FIGURE 6 The interplay between the interaction and the percolation effect. /I= 1.0 
(left), p=O.1 (right). q5=0.15, r =  1Ou. 

3. CONCLUSIONS 

We showed in this work how the scaling behaviour of concentration, 
described globally by the box-counting fractal dimension, and a de- 
tailed analysis of the sources of its variation, contribute to the descrip- 
tion of the interplay of diverse factors during the clustering processes 
below the percolation threshold. Thus, we showed 

1. The artificial random effect alters greatly the computation of di- 
mensions, and should be considered. We give a working solution to 
this problem, but it deserves further analysis. 
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SCALING AND PERCOLATION 535 

2. The comparison of dimensions via their computation as slopes 
gives a good insight for the analysis of the contribution of different 
factors to the clustering phenomena: the breakpoints in the data 
curves are strongly indicative of two interplaying correlation 
lengths. 

3. The clustering effect due to interactions at  low densities depends 
strongly on the range of the potential. For moderate ranges, strong 
clustering, whereas for long and short ranges this effect becomes 
negligible, with different geometrical causes. 

4. The clustering effect of interactions alters the scale in the per- 
colation effect, where the particle scale is replaced by the slowly 
increasing correlation length of the interaction clusters. The geo- 
metrical effect of percolation and its rapidly increasing correlation 
length prevails near the threshold, as the universality argument 
predicts. 
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